"""Modules to generate different imaging artefacts.
"""
import numpy as np
import random
from typing import Union, Any
[docs]
def artefacts_mix(data: np.ndarray, **artefacts_dict: Any) -> Union[np.ndarray, list]:
"""A module to generate and apply a mix of various typical imaging artefacts to add to the simulated data.
One can build various dictionaries with keywords arguments specified
bellow and pass it to the function as: `artefacts_mix(data, **noise_dict, **zingers, **etc)`.
DISCLAIMER: Note that most of the features are experimental and do not always reflect the
accurate modelling of the real imaging artefacts.
Args:
data (np.ndarray): 2D or 3D numpy array (sinogram or 3D projection data).
The input data must be of the following shape: 2D sinogram (anglesDim, DetectorsHoriz),
3D projection data (DetectorsVert, anglesDim, DetectorsHoriz).
**artefacts_dict (dict): A dictionary with keyword arguments related to different artefact type.
Keyword Args:
noise_type (str): Define noise type as 'Poisson' or 'Gaussian'.
noise_amplitude (int, float): Photon flux for Poisson or variance for Gaussian noise.
noise_seed (int): Seeds for noise generator. 'None' defines random generation.
noise_prelog (bool): Set to True if pre-log (raw) data required.
zingers_percentage (float): The amount of zingers (dead pixels, outliers) to be added to the data.
zingers_modulus (int): Modulus to control the amount of 4/6 pixel clusters to be added.
stripes_percentage (float): The amount of stripes in the data (rings in reconstruction).
stripes_maxthickness (int): Maxthickness defines the maximal thickness of a stripe.
stripes_intensity (float): Controls the intensity levels of stripes.
stripe_type (str): Stripe types can be 'partial' or 'full'.
stripes_variability (float): Variability multiplier to incorporate the change of intensity in stripe.
datashifts_maxamplitude_pixel (int): Controls pixel-wise (integer) misalignment in data.
datashifts_maxamplitude_subpixel (float): Controls subpixel misalignment in data.
pve_strength (int): The strength of partial volume effect, responsible for the limited resolution of a scanner.
fresnel_dist_observation (int): The distance for observation for fresnel propagator.
fresnel_scale_factor (float): Fresnel propagator scaling.
fresnel_wavelenght (float): Fresnel propagator wavelength.
verbose (bool): Make the output of modules verbose.
Returns:
np.ndarray: 2D/3D numpy array with artefacts applied to input data.
[np.ndarray, shifts]: a list of 2D/3D numpy array and simulated shifts.
"""
####### VERBOSE ########
if "verbose" not in artefacts_dict:
verbose = True
else:
verbose = artefacts_dict["verbose"]
####### NOISE DICTIONARY########
_noise_: dict = {}
if "noise_type" not in artefacts_dict:
_noise_["noise_type"] = None
else:
_noise_["noise_type"] = artefacts_dict["noise_type"]
if "noise_amplitude" not in artefacts_dict:
_noise_["noise_amplitude"] = 1e5
else:
_noise_["noise_amplitude"] = artefacts_dict["noise_amplitude"]
if "noise_seed" not in artefacts_dict:
_noise_["noise_seed"] = None
else:
_noise_["noise_seed"] = artefacts_dict["noise_seed"]
if "noise_prelog" not in artefacts_dict:
_noise_["noise_prelog"] = None
else:
_noise_["noise_prelog"] = artefacts_dict["noise_prelog"]
####### ZINGERS ########
_zingers_: dict = {}
if "zingers_percentage" not in artefacts_dict:
_zingers_["zingers_percentage"] = None
else:
_zingers_["zingers_percentage"] = artefacts_dict["zingers_percentage"]
if "zingers_modulus" not in artefacts_dict:
_zingers_["zingers_modulus"] = 10
else:
_zingers_["zingers_modulus"] = artefacts_dict["zingers_modulus"]
####### STRIPES ########
_stripes_: dict = {}
if "stripes_percentage" not in artefacts_dict:
_stripes_["stripes_percentage"] = None
else:
_stripes_["stripes_percentage"] = artefacts_dict["stripes_percentage"]
if "stripes_maxthickness" not in artefacts_dict:
_stripes_["stripes_maxthickness"] = 1.0
else:
_stripes_["stripes_maxthickness"] = artefacts_dict["stripes_maxthickness"]
if "stripes_intensity" not in artefacts_dict:
_stripes_["stripes_intensity"] = 0.1
else:
_stripes_["stripes_intensity"] = artefacts_dict["stripes_intensity"]
if "stripes_type" not in artefacts_dict:
_stripes_["stripes_type"] = "full"
else:
_stripes_["stripes_type"] = artefacts_dict["stripes_type"]
if "stripes_variability" not in artefacts_dict:
_stripes_["stripes_variability"] = 0.0
else:
_stripes_["stripes_variability"] = artefacts_dict["stripes_variability"]
####### DATASHIFTS ########
_datashifts_: dict = {}
if "datashifts_maxamplitude_pixel" not in artefacts_dict:
_datashifts_["datashifts_maxamplitude_pixel"] = None
else:
_datashifts_["datashifts_maxamplitude_pixel"] = artefacts_dict[
"datashifts_maxamplitude_pixel"
]
if "datashifts_maxamplitude_subpixel" not in artefacts_dict:
_datashifts_["datashifts_maxamplitude_subpixel"] = None
else:
_datashifts_["datashifts_maxamplitude_subpixel"] = artefacts_dict[
"datashifts_maxamplitude_subpixel"
]
####### PVE ########
_pve_: dict = {}
if "pve_strength" not in artefacts_dict:
_pve_["pve_strength"] = None
else:
_pve_["pve_strength"] = artefacts_dict["pve_strength"]
_fresnel_propagator_: dict = {}
if "fresnel_dist_observation" not in artefacts_dict:
_fresnel_propagator_["fresnel_dist_observation"] = None
else:
_fresnel_propagator_["fresnel_dist_observation"] = artefacts_dict[
"fresnel_dist_observation"
]
if "fresnel_scale_factor" not in artefacts_dict:
_fresnel_propagator_["fresnel_scale_factor"] = 10
else:
_fresnel_propagator_["fresnel_scale_factor"] = artefacts_dict[
"fresnel_scale_factor"
]
if "fresnel_wavelenght" not in artefacts_dict:
_fresnel_propagator_["fresnel_wavelenght"] = 0.0001
else:
_fresnel_propagator_["fresnel_wavelenght"] = artefacts_dict[
"fresnel_wavelenght"
]
###########################################################################
################Applying artefacts and noise to the data###################
###########################################################################
# PARTIAL VOLUME EFFECT
if _pve_["pve_strength"] is not None:
sino_artifacts = np.float32(pve(data=data, pve_strength=_pve_["pve_strength"]))
if verbose is True:
print("Partial volume effect (PVE) has been simulated.")
else:
sino_artifacts = np.float32(data)
# FRESNEL PROPAGATOR
if _fresnel_propagator_["fresnel_dist_observation"] is not None:
sino_artifacts = np.float32(
fresnel_propagator(
data=sino_artifacts,
dist_observation=_fresnel_propagator_["fresnel_dist_observation"],
scale_factor=_fresnel_propagator_["fresnel_scale_factor"],
wavelenght=_fresnel_propagator_["fresnel_wavelenght"],
)
)
if verbose is True:
print("Fresnel propagator has been simulated.")
# ZINGERS
if _zingers_["zingers_percentage"] is not None:
sino_artifacts = np.float32(
zingers(
data=sino_artifacts,
percentage=_zingers_["zingers_percentage"],
modulus=_zingers_["zingers_modulus"],
)
)
if verbose is True:
print("Zingers have been added to the data.")
# STRIPES
if _stripes_["stripes_percentage"] is not None:
sino_artifacts = np.float32(
stripes(
data=sino_artifacts,
percentage=_stripes_["stripes_percentage"],
maxthickness=_stripes_["stripes_maxthickness"],
intensity_thresh=_stripes_["stripes_intensity"],
stripe_type=_stripes_["stripes_type"],
variability=_stripes_["stripes_variability"],
)
)
if verbose is True:
print("Stripes leading to ring artefacts have been simulated.")
# DATASHIFTS
if _datashifts_["datashifts_maxamplitude_pixel"] is not None:
[sino_artifacts, shifts] = datashifts(
data=sino_artifacts,
maxamplitude=_datashifts_["datashifts_maxamplitude_pixel"],
)
if verbose is True:
print("Data shifts have been simulated.")
if _datashifts_["datashifts_maxamplitude_subpixel"] is not None:
[sino_artifacts, shifts] = datashifts_subpixel(
data=sino_artifacts,
maxamplitude=_datashifts_["datashifts_maxamplitude_subpixel"],
)
if verbose is True:
print("Data shifts (in subpixel precision) have been simulated.")
# NOISE
if _noise_["noise_type"] is not None:
sino_artifacts = noise(
data=sino_artifacts,
sigma=_noise_["noise_amplitude"],
noisetype=_noise_["noise_type"],
seed=_noise_["noise_seed"],
prelog=_noise_["noise_prelog"],
)
if verbose is True:
print("{} noise has been added to the data.".format(_noise_["noise_type"]))
if (_datashifts_["datashifts_maxamplitude_pixel"]) or (
_datashifts_["datashifts_maxamplitude_subpixel"]
) is not None:
return [np.float32(sino_artifacts), shifts]
else:
return np.float32(sino_artifacts)
[docs]
def stripes(
data: np.ndarray,
percentage: float,
maxthickness: int,
intensity_thresh: float,
stripe_type: str,
variability: float,
) -> np.ndarray:
"""Function to add stripes (constant offsets) to sinograms or 3D projection data which results in rings in the
reconstructed image.
Args:
data (np.ndarray): 2D sinogram (anglesDim, DetectorsHoriz) or 3D projection data (DetectorsVert, anglesDim, DetectorsHoriz).
percentage (float): Percentage defines the amount of stripes in the data.
maxthickness (int): Defines the maximal thickness of a stripe.
intensity_thresh (float): Controls the intensity levels of stripes.
stripe_type (str): Choose between 'partial' or 'full'.
variability (float): Variability multiplier to incorporate change of intensity in the stripe.
Raises:
ValueError: Percentage is out of range.
ValueError: Thickness is out of range.
Returns:
np.ndarray: 2D sinogram or 3D projection data with stripes
"""
if data.ndim == 2:
(anglesDim, DetectorsDimH) = np.shape(data)
else:
(DetectorsDimV, anglesDim, DetectorsDimH) = np.shape(data)
if 0 < percentage <= 100:
pass
else:
raise ValueError("percentage must be larger than zero but smaller than 100")
if 0 <= maxthickness <= 10:
pass
else:
raise ValueError("maximum thickness must be in [0,10] range")
if stripe_type != "partial":
stripe_type = "full"
sino_stripes = data.copy()
max_intensity = np.max(sino_stripes)
range_detect = int((np.float32(DetectorsDimH)) * (np.float32(percentage) / 100.0))
if data.ndim == 2:
for x in range(range_detect):
for mm in range(0, 20):
randind = random.randint(0, DetectorsDimH - 1) # generate random index
if sino_stripes[0, randind] != 0.0:
break
if stripe_type == "partial":
randind_ang1 = random.randint(0, anglesDim)
randind_ang2 = random.randint(0, anglesDim)
else:
randind_ang1 = 0
randind_ang2 = anglesDim
randthickness = random.randint(0, maxthickness) # generate random thickness
randintens = random.uniform(-1.0, 0.5) # generate random multiplier
intensity = max_intensity * randintens * intensity_thresh
if (randind > 0 + randthickness) & (
randind < DetectorsDimH - randthickness
):
for x1 in range(-randthickness, randthickness + 1):
if variability != 0.0:
intensity_off = variability * max_intensity
else:
intensity_off = 0.0
for ll in range(randind_ang1, randind_ang2):
sino_stripes[ll, randind + x1] += intensity + intensity_off
intensity_off += (
[-1, 1][random.randrange(2)] * variability * max_intensity
)
# sino_stripes[randind_ang1:randind_ang2,randind+x1] += intensity
else:
for j in range(DetectorsDimV):
for x in range(range_detect):
for mm in range(0, 20):
randind = random.randint(
0, DetectorsDimH - 1
) # generate random index
if sino_stripes[j, 0, randind] != 0.0:
break
if stripe_type == "partial":
randind_ang1 = random.randint(0, anglesDim)
randind_ang2 = random.randint(0, anglesDim)
else:
randind_ang1 = 0
randind_ang2 = anglesDim
randthickness = random.randint(
0, maxthickness
) # generate random thickness
randintens = random.uniform(-1, 0.5) # generate random multiplier
intensity = max_intensity * randintens * intensity_thresh
if (randind > 0 + randthickness) & (
randind < DetectorsDimH - randthickness
):
for x1 in range(-randthickness, randthickness + 1):
if variability != 0.0:
intensity_off = variability * max_intensity
else:
intensity_off = 0.0
for ll in range(randind_ang1, randind_ang2):
sino_stripes[j, ll, randind + x1] += (
intensity + intensity_off
)
intensity_off += (
[-1, 1][random.randrange(2)]
* variability
* max_intensity
)
return sino_stripes
[docs]
def zingers(data: np.ndarray, percentage: float, modulus: int) -> np.ndarray:
"""Adding zingers (zero single pixels or small 4 pixels clusters)
to sinograms or 6 voxels to 3D projection data.
Args:
data (np.ndarray): 2D sinogram or 3D projection data. The input data must be of the following shape: 2D sinogram (anglesDim, DetectorsHoriz),
3D projection data (DetectorsVert, anglesDim, DetectorsHoriz).
percentage (float): The amount of zingers to be added to the data.
modulus (int): Modulus to control the amount of 4/6 pixel clusters to be added.
Raises:
ValueError: Percentage is out of range.
ValueError: Modulus must be positive.
Returns:
np.ndarray: 2D or 3D array with zingers.
"""
if data.ndim == 2:
(anglesDim, DetectorsDimH) = np.shape(data)
else:
(DetectorsDimV, anglesDim, DetectorsDimH) = np.shape(data)
if 0.0 < percentage <= 100.0:
pass
else:
raise ValueError("percentage must be larger than zero but smaller than 100")
if modulus > 0:
pass
else:
raise ValueError("Modulus integer must be positive")
sino_zingers = data.copy()
length_sino = np.size(sino_zingers)
num_values = int((length_sino) * (np.float32(percentage) / 100.0))
sino_zingers_fl = sino_zingers.flatten()
for x in range(num_values):
randind = random.randint(0, length_sino - 1) # generate random index
sino_zingers_fl[randind] = 0
if (x % int(modulus)) == 0:
if data.ndim == 2:
if (randind > DetectorsDimH) & (randind < length_sino - DetectorsDimH):
sino_zingers_fl[randind + 1] = 0
sino_zingers_fl[randind - 1] = 0
sino_zingers_fl[randind + DetectorsDimH] = 0
sino_zingers_fl[randind - DetectorsDimH] = 0
else:
if (randind > DetectorsDimH * DetectorsDimV) & (
randind < length_sino - DetectorsDimH * DetectorsDimV
):
sino_zingers_fl[randind + 1] = 0
sino_zingers_fl[randind - 1] = 0
sino_zingers_fl[randind + DetectorsDimH] = 0
sino_zingers_fl[randind - DetectorsDimH] = 0
sino_zingers_fl[randind + DetectorsDimH * DetectorsDimV] = 0
sino_zingers_fl[randind - DetectorsDimH * DetectorsDimV] = 0
sino_zingers[:] = sino_zingers_fl.reshape(sino_zingers.shape)
return sino_zingers
[docs]
def noise(
data: np.ndarray,
sigma: Union[int, float],
noisetype: str,
seed: bool = True,
prelog: bool = False,
) -> Union[list, np.ndarray]:
"""Adding random noise to data (adapted from LD-CT simulator)
Args:
data (np.ndarray): N-d array
sigma (Union[int, float]): int for Poisson or float for Gaussian
noisetype (str): 'Gaussian' or 'Poisson'
seed (bool, optional): Initiate random seed with True. Defaults to True.
prelog (bool, optional): get raw data if true, returns a list [noisy, raw]!. Defaults to False.
Returns:
np.ndarray: N-d array
"""
data_noisy = data.copy()
maxData = np.max(data)
data_noisy = data / maxData # normalising
if seed is True:
np.random.seed(int(seed))
if noisetype == "Gaussian":
# add normal Gaussian noise
data_noisy += np.random.normal(loc=0.0, scale=sigma, size=np.shape(data_noisy))
data_noisy[data_noisy < 0] = 0
data_noisy *= maxData
elif noisetype == "Poisson":
# add Poisson noise
if maxData > 0:
ri = 1.0
sig = np.sqrt(
11
) # standard variance of electronic noise, a characteristic of a CT scanner
yb = (
sigma * np.exp(-data_noisy) + ri
) # exponential transform to incident flux
data_raw = np.random.poisson(yb) + np.sqrt(sig) * np.reshape(
np.random.randn(np.size(yb)), np.shape(yb)
)
li_hat = -np.log((data_raw - ri) / sigma) * maxData # log corrected data
li_hat[(data_raw - ri) <= 0] = 0.0
data_noisy = li_hat.copy()
else:
print("Select 'Gaussian' or 'Poisson' for the noise type")
if prelog is True:
return [data_noisy, data_raw]
else:
return data_noisy
[docs]
def datashifts(data: np.ndarray, maxamplitude: int) -> list:
"""Function to add random pixel shifts to 3D or 3D data as an offset for each angular position.
Args:
data (np.ndarray): 2D sinogram or 3D projection data. The input data must be of the following shape: 2D sinogram (anglesDim, DetectorsHoriz),
3D projection data (DetectorsVert, anglesDim, DetectorsHoriz).
maxamplitude (int): The misilighnment ammplitude. Defines the maximal amplitude of each shift in pixels.
Returns:
list: 2D or 3d data with misalignment and shifts vectors [data, shifts].
"""
if data.ndim == 2:
(anglesDim, DetectorsDimH) = np.shape(data)
shifts = np.zeros(anglesDim, dtype="int8") # the vector of shifts
else:
(DetectorsDimV, anglesDim, DetectorsDimH) = np.shape(data)
shifts = np.zeros([anglesDim, 2], dtype="int8") # the 2D vector of shifts
sino_shifts = np.zeros(np.shape(data), dtype="float32")
non = lambda s: s if s < 0 else None
mom = lambda s: max(0, s)
for x in range(anglesDim):
rand_shift = random.randint(
-maxamplitude, maxamplitude
) # generate random shift (int)
if data.ndim == 2:
shifts[x] = rand_shift
projection = data[x, :] # extract 1D projection
projection_shift = np.zeros(np.shape(projection), dtype="float32")
projection_shift[mom(rand_shift) : non(rand_shift)] = projection[
mom(-rand_shift) : non(-rand_shift)
]
sino_shifts[x, :] = projection_shift
else:
rand_shift2 = random.randint(
-maxamplitude, maxamplitude
) # generate random shift (int)
shifts[x, 0] = rand_shift2
shifts[x, 1] = rand_shift
projection2D = data[:, x, :] # extract 2D projection
projection2D_shift = np.zeros(np.shape(projection2D), dtype="float32")
projection2D_shift[
mom(rand_shift) : non(rand_shift), mom(rand_shift2) : non(rand_shift2)
] = projection2D[
mom(-rand_shift) : non(-rand_shift),
mom(-rand_shift2) : non(-rand_shift2),
]
sino_shifts[:, x, :] = projection2D_shift
return [sino_shifts, shifts]
[docs]
def datashifts_subpixel(data: np.ndarray, maxamplitude: float) -> list:
"""Function to add random sub-pixel shifts to 3D or 3D data as an offset for each angular position.
Args:
data (np.ndarray): 2D sinogram or 3D projection data. The input data must be of the following shape: 2D sinogram (anglesDim, DetectorsHoriz),
3D projection data (DetectorsVert, anglesDim, DetectorsHoriz).
maxamplitude (float): The misilighnment ammplitude. Defines the maximal amplitude of each shift.
Returns:
list: 2D or 3d data with misalignment and shifts vectors [data, shifts].
"""
from skimage import transform as tf
if data.ndim == 2:
shifts = np.zeros([1, 2], dtype="float32")
random_shift_x = random.uniform(
-maxamplitude, maxamplitude
) # generate a random floating point number
random_shift_y = random.uniform(
-maxamplitude, maxamplitude
) # generate a random floating point number
tform = tf.SimilarityTransform(translation=(-random_shift_x, -random_shift_y))
sino_shifts = tf.warp(data, tform, order=5)
else:
(DetectorsDimV, anglesDim, DetectorsDimH) = np.shape(data)
shifts = np.zeros([anglesDim, 2], dtype="float32") # the 2D vector of shifts
sino_shifts = np.zeros(np.shape(data), dtype="float32")
for x in range(anglesDim):
random_shift_x = random.uniform(
-maxamplitude, maxamplitude
) # generate a random floating point number
random_shift_y = random.uniform(
-maxamplitude, maxamplitude
) # generate a random floating point number
projection2D = data[:, x, :] # extract 2D projection
tform = tf.SimilarityTransform(
translation=(-random_shift_x, -random_shift_y)
)
projection_shifted = tf.warp(projection2D, tform, order=5)
shifts[x, 0] = random_shift_x
shifts[x, 1] = random_shift_y
sino_shifts[:, x, :] = projection_shifted
return [sino_shifts, shifts]
[docs]
def pve(data: np.ndarray, pve_strength: int) -> np.ndarray:
"""Applying Partial Volume effect (smoothing) to data.
Args:
data (np.ndarray): 2D sinogram or 3D projection data. The input data must be of the following shape: 2D sinogram (anglesDim, DetectorsHoriz),
3D projection data (DetectorsVert, anglesDim, DetectorsHoriz).
pve_strength (int): The level of smoothing, defined by kernel size.
Raises:
ValueError: Smoothing kernel must be positive
Returns:
np.ndarray: Smoothed 2D or 3D data.
"""
from scipy.ndimage import gaussian_filter
data_pve = data.copy()
if pve_strength > 0:
pass
else:
raise ValueError("Smoothing kernel must be positive")
if data.ndim == 2:
(anglesDim, DetectorsDimH) = np.shape(data)
for x in range(anglesDim):
data_pve[x, :] = gaussian_filter(data_pve[x, :], pve_strength)
else:
(DetectorsDimV, anglesDim, DetectorsDimH) = np.shape(data)
for x in range(anglesDim):
data_pve[:, x, :] = gaussian_filter(data_pve[:, x, :], pve_strength)
return data_pve
[docs]
def fresnel_propagator(
data: np.ndarray, dist_observation: int, scale_factor: float, wavelenght: float
) -> np.ndarray:
"""Fresnel propagator applied to data.
Adapted from the script by Adrián Carbajal-Domínguez, adrian.carbajal@ujat.mx
Args:
data (np.ndarray): 2D sinogram or 3D projection data. The input data must be of the following shape: 2D sinogram (anglesDim, DetectorsHoriz),
3D projection data (DetectorsVert, anglesDim, DetectorsHoriz).
dist_observation (int): The distance for obervation for fresnel propagator.
scale_factor (float): Scaling.
wavelenght (float): Wavelength.
Returns:
np.ndarray: 2D or 3D data with propagation.
"""
data_fresnel = data.copy()
if data.ndim == 2:
(anglesDim, DetectorsDimH) = np.shape(data)
n1 = DetectorsDimH * 0.5
# Define the angular spectrum coordinates
u = np.arange(-n1, n1, 1)
# Define the propagation matrix
propagator = np.exp(
2
* np.pi
* 1j
* (dist_observation / scale_factor)
* np.sqrt((1 / wavelenght) ** 2 - (u / 10) ** 2)
)
#### Compute the Fast Fourier Transform of each 1D projection
for x in range(anglesDim):
f = np.fft.fft(data_fresnel[x, :])
# Correct the low and high frequencies
fshift = np.fft.fftshift(f)
# multiply both matrices: Fourier transform and the propagator matrices.
field = fshift * propagator
# Calculate the inverse Fourier transform
field2 = np.fft.ifft(field)
data_fresnel[x, :] = np.abs(field2)
else:
(DetectorsDimV, anglesDim, DetectorsDimH) = np.shape(data)
####Define the size of the propagation function p(u,v). It has to be of the same size of the image.
n1 = DetectorsDimV * 0.5
n2 = DetectorsDimH * 0.5
# Define the angular spectrum coordinates
u = np.arange(-n1, n1, 1)
v = np.arange(-n2, n2, 1)
U, V = np.meshgrid(u, v)
# Define the propagation matrix
propagator = np.exp(
2
* np.pi
* 1j
* (dist_observation / scale_factor)
* np.sqrt(
(1 / wavelenght) ** 2
- (U / scale_factor) ** 2
- (V / scale_factor) ** 2
)
)
#### Compute the Fast Fourier Transform of each 2D projection
for x in range(anglesDim):
f = np.fft.fft2(data_fresnel[:, x, :])
# Correct the low and high frequencies
fshift = np.fft.fftshift(f)
# multiply both matrices: Fourier transform and the propagator matrices.
field = fshift * np.transpose(propagator)
# Calculate the inverse Fourier transform
field2 = np.fft.ifft2(field)
data_fresnel[:, x, :] = np.abs(field2)
return data_fresnel