Source code for tomobar.regularisers

"""Adding regularisers from the CCPi-regularisation toolkit and
instantiate a proximal operator for iterative methods.
"""

import numpy as np
from typing import Union

try:
    from ccpi.filters.regularisers import (
        ROF_TV,
        FGP_TV,
        PD_TV,
        SB_TV,
        LLT_ROF,
        TGV,
        NDF,
        Diff4th,
        NLTV,
    )
except ImportError:
    print(
        "____! CCPi-regularisation package is missing, please install to support regularisation !____"
    )

try:
    from pypwt import Wavelets
except ImportError:
    # "____! Wavelet package pywpt is missing, please install for wavelet regularisation !____"
    pass


[docs] def prox_regul(self, X: np.ndarray, _regularisation_: dict) -> Union[np.ndarray, tuple]: """Enabling proximal operators step in interative reconstruction. Args: X (np.ndarray): 2D or 3D numpy array. _regularisation_ (dict): Regularisation dictionary with parameters, see :mod:`tomobar.supp.dicts`. Returns: np.ndarray or a tuple: Filtered 2D or 3D numpy array or a tuple. """ info_vec = np.zeros(2, dtype=np.float32) # The proximal operator of the chosen regulariser if "ROF_TV" in _regularisation_["method"]: # Rudin - Osher - Fatemi Total variation method X = ROF_TV( X, _regularisation_["regul_param"], _regularisation_["iterations"], _regularisation_["time_marching_step"], _regularisation_["tolerance"], device=self.Atools.device_index, infovector=info_vec, ) if "FGP_TV" in _regularisation_["method"]: # Fast-Gradient-Projection Total variation method X = FGP_TV( X, _regularisation_["regul_param"], _regularisation_["iterations"], _regularisation_["tolerance"], _regularisation_["methodTV"], self.nonneg_regul, device=self.Atools.device_index, infovector=info_vec, ) if "PD_TV" in _regularisation_["method"]: # Primal-Dual (PD) Total variation method by Chambolle-Pock X = PD_TV( X, _regularisation_["regul_param"], _regularisation_["iterations"], _regularisation_["tolerance"], _regularisation_["PD_LipschitzConstant"], _regularisation_["methodTV"], self.nonneg_regul, device=self.Atools.device_index, infovector=info_vec, ) if "SB_TV" in _regularisation_["method"]: # Split Bregman Total variation method X = SB_TV( X, _regularisation_["regul_param"], _regularisation_["iterations"], _regularisation_["tolerance"], _regularisation_["methodTV"], device=self.Atools.device_index, infovector=info_vec, ) if "LLT_ROF" in _regularisation_["method"]: # Lysaker-Lundervold-Tai + ROF Total variation method X = LLT_ROF( X, _regularisation_["regul_param"], _regularisation_["regul_param2"], _regularisation_["iterations"], _regularisation_["time_marching_step"], _regularisation_["tolerance"], device=self.Atools.device_index, infovector=info_vec, ) if "TGV" in _regularisation_["method"]: # Total Generalised Variation method X = TGV( X, _regularisation_["regul_param"], _regularisation_["TGV_alpha1"], _regularisation_["TGV_alpha2"], _regularisation_["iterations"], _regularisation_["PD_LipschitzConstant"], _regularisation_["tolerance"], device=self.Atools.device_index, infovector=info_vec, ) if "NDF" in _regularisation_["method"]: # Nonlinear isotropic diffusion method X = NDF( X, _regularisation_["regul_param"], _regularisation_["edge_threhsold"], _regularisation_["iterations"], _regularisation_["time_marching_step"], self.NDF_method, _regularisation_["tolerance"], device=self.Atools.device_index, infovector=info_vec, ) if "Diff4th" in _regularisation_["method"]: # Anisotropic diffusion of higher order (X, info_vec) = Diff4th( X, _regularisation_["regul_param"], _regularisation_["edge_threhsold"], _regularisation_["iterations"], _regularisation_["time_marching_step"], _regularisation_["tolerance"], device=self.Atools.device_index, infovector=info_vec, ) if "NLTV" in _regularisation_["method"]: # Non-local Total Variation X = NLTV( X, _regularisation_["NLTV_H_i"], _regularisation_["NLTV_H_j"], _regularisation_["NLTV_H_j"], _regularisation_["NLTV_Weights"], _regularisation_["NumNeighb"], _regularisation_["regul_param"], _regularisation_["iterations"], ) if "WAVELETS" in _regularisation_["method"]: if X.ndim == 2: W = Wavelets(X, "db5", 3) W.forward() W.soft_threshold(_regularisation_["regul_param2"]) W.inverse() X = W.image else: for i in range(np.shape(X)[0]): W = Wavelets(X[i, :, :], "db5", 3) W.forward() W.soft_threshold(_regularisation_["regul_param2"]) W.inverse() X[i, :, :] = W.image return (X, info_vec)