Real data reconstruction

Real data reconstruction#

This tutorial covers real data reconstruction using ToMoBAR software. The data is obtained at Diamond Light Source facility (UK synchrotron), i12 beamline. The sample is a magnesium allow which undergoes some thermal changes in which the dendritic growth occurs. See more details about the experiment in [GUO2018] and more on reconstruction using ToMoBAR in [KAZ2017].

This tutorial loosely follows Demo_RealData.py demo.

  • We will extract a 2D sinogram out of 3D projection data and reconstruct it using the FBP method.

from tomobar.methodsDIR import RecToolsDIR

Rectools = RecToolsDIR(
DetectorsDimH=detectorHoriz,  # Horizontal detector dimension
DetectorsDimV=None,  # Vertical detector dimension
CenterRotOffset=None,  # Center of Rotation scalar
AnglesVec=angles_rad,  # A vector of projection angles in radians
ObjSize=N_size,  # Reconstructed object dimensions (scalar)
device_projector="gpu",
)

FBPrec = Rectools.FBP(sinogram, data_axes_labels_order=["detX", "angles"])
FBP recon
  • Next we reconstruct using ordered-subsets FISTA with Total Variation regularisation.

from tomobar.methodsIR import RecToolsIR

Rectools = RecToolsIR(
    DetectorsDimH=detectorHoriz,  # Horizontal detector dimension
    DetectorsDimV=None,  # Vertical detector dimension (3D case)
    CenterRotOffset=None,  # Center of Rotation scalar
    AnglesVec=angles_rad,  # A vector of projection angles in radians
    ObjSize=N_size,  # Reconstructed object dimensions (scalar)
    datafidelity="PWLS",  # Data fidelity term
    device_projector="gpu",
)

_data_ = {
    "projection_norm_data": sinogram,  # Normalised projection data
    "projection_raw_data": sinogram_raw,  # Raw projection data
    "OS_number": 6,  # The number of subsets
    "data_axes_labels_order": ["detX", "angles"],
}
lc = Rectools.powermethod(_data_)  # calculate Lipschitz constant

_algorithm_ = {"iterations": 25, "lipschitz_const": lc}

_regularisation_ = {
    "method": "PD_TV",  # Regularisation method
    "regul_param": 0.000002,  # Regularisation parameter
    "iterations": 60,  # The number of regularisation iterations
    "device_regulariser": "gpu",
}

RecFISTA = Rectools.FISTA(_data_, _algorithm_, _regularisation_)
FISTA recon
  • Then we will add the Group-Huber data fidelity model [PM2015] to minimise the ring artefacts. The only change needed is the update of the _data_ dictionary.

 _data_.update({"ringGH_lambda": 0.000015})
 _data_.update({"ringGH_accelerate": 6})

RecFISTA = Rectools.FISTA(_data_, _algorithm_, _regularisation_)
FISTA recon
  • We also can try the Stripe-Weighted Least Squares (SWLS) data model [HOA2017]. As we change the data fidelity, we need to re-initialise the class object.

Rectools = RecToolsIR(
    DetectorsDimH=detectorHoriz,  # Horizontal detector dimension
    DetectorsDimV=None,  # Vertical detector dimension (3D case)
    CenterRotOffset=None,  # Center of Rotation scalar
    AnglesVec=angles_rad,  # A vector of projection angles in radians
    ObjSize=N_size,  # Reconstructed object dimensions (scalar)
    datafidelity="SWLS",  # Data fidelity term
    device_projector="gpu",
)

_data_ = {
    "projection_norm_data": sinogram,  # Normalised projection data
    "projection_raw_data": sinogram_raw,  # Raw projection data
    "OS_number": 6,  # The number of subsets
    "beta_SWLS": 0.2,  #  parameter for the SWLS model
    "data_axes_labels_order": ["detX", "angles"],
}

RecFISTA = Rectools.FISTA(_data_, _algorithm_, _regularisation_)
FISTA recon

As one can see that visually the SWLS model produced the best reconstruction here. This model is indeed works very well when the stripes (rings) are full and not partial.