References#
- CT2020
D. Kazantsev and N. Wadeson. 2020, Tomographic MOdel-BAsed Reconstruction (ToMoBAR) software for high resolution synchrotron X-ray tomography, CT Meeting 2020. Download here.
- SX2022
D. Kazantsev, N. Wadeson, M. Basham, 2022. High performance Savu software for fast 3D model-based iterative reconstruction of large data at Diamond Light Source. SoftwareX, 19, p.101157.
- BT2009
A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal on Imaging Sciences, vol. 2, no. 1, pp. 183–202, 2009.
- PM2015
P. Paleo and A. Mirone 2015. Ring artifacts correction in compressed sensing tomographic reconstruction. Journal of synchrotron radiation, 22(5), pp.1268-1278.
- HOA2017
H. Om Aggrawal et al. 2017. A Convex Reconstruction Model for X-ray tomographic Imaging with Uncertain Flat-fields”, IEEE Transactions on Computational Imaging.
- KAZ1_2017
D. Kazantsev et al. 2017. A Novel Tomographic Reconstruction Method Based on the Robust Student’s t Function For Suppressing Data Outliers. IEEE TCI, 3(4), pp.682-693.
- KAZ2019
D. Kazantsev et al. 2019. CCPi-Regularisation toolkit for computed tomographic image reconstruction with proximal splitting algorithms. SoftwareX, 9, pp.317-323.
- GUO2018
E. Guo et al. 2018. The influence of nanoparticles on dendritic grain growth in Mg alloys. Acta Materialia.
- KAZ2017
D. Kazantsev et al. 2017. Model-based iterative reconstruction using higher-order regularization of dynamic synchrotron data. Measurement Science and Technology, 28(9), p.094004.