"""The series of functions for Fourier processing and reconstruction.
The methods that use nonuniform FFT's are adopted from the TomoCupy library
written by Viktor Nikitin.
https://tomocupy.readthedocs.io/en/latest/
"""
nocupy = False
import numpy as np
try:
import cupy as xp
from cupyx import scipy
except ImportError:
nocupy = True
print(
"Cupy library is a required dependency for this part of the code, please install"
)
if nocupy:
import numpy as xp
import scipy
from tomobar.cuda_kernels import load_cuda_module
def _filtersinc3D_cupy(projection3D: xp.ndarray, cutoff: float = 0.6) -> xp.ndarray:
"""Applies a SINC filter to 3D projection data
Args:
data : xp.ndarray
Projection data as a CuPy array.
cutoff: float
cutoff for sinc filter, lower values lead to sharper reconstructions
Returns:
xp.ndarray
The filtered projectiond data as a CuPy array.
"""
(projectionsNum, DetectorsLengthV, DetectorsLengthH) = xp.shape(projection3D)
# prepearing a ramp-like filter to apply to every projection
module = load_cuda_module("generate_filtersync")
filter_prep = module.get_function("generate_filtersinc")
# Use real FFT to save space and time
proj_f = scipy.fft.rfft(projection3D, axis=-1, norm="backward", overwrite_x=True)
cache = xp.fft.config.get_plan_cache()
cache.clear() # flush FFT cache here before performing ifft to save the memory
xp._default_memory_pool.free_all_blocks()
# generating the filter here so we can schedule/allocate while FFT is keeping the GPU busy
f = xp.empty((1, 1, DetectorsLengthH // 2 + 1), dtype=xp.float32)
bx = 256
# because FFT is linear, we can apply the FFT scaling + multiplier in the filter
multiplier = 1.0 / projectionsNum / DetectorsLengthH
filter_prep(
grid=(1, 1, 1),
block=(bx, 1, 1),
args=(
xp.float32(cutoff),
f,
xp.int32(DetectorsLengthH),
xp.float32(multiplier),
),
shared_mem=bx * 4,
)
# actual filtering
proj_f *= f
projection3D = scipy.fft.irfft(
proj_f, projection3D.shape[2], axis=-1, norm="forward", overwrite_x=True
)
cache = xp.fft.config.get_plan_cache()
cache.clear()
xp._default_memory_pool.free_all_blocks()
return projection3D
def _wint(n, t):
N = len(t)
s = np.linspace(1e-40, 1, n)
# Inverse vandermonde matrix
tmp1 = np.arange(n)
tmp2 = np.arange(1, n + 2)
iv = np.linalg.inv(np.exp(np.outer(tmp1, np.log(s))))
u = np.diff(
np.exp(np.outer(tmp2, np.log(s))) * np.tile(1.0 / tmp2[..., np.newaxis], [1, n])
) # integration over short intervals
W1 = np.matmul(iv, u[1 : n + 1, :]) # x*pn(x) term
W2 = np.matmul(iv, u[0:n, :]) # const*pn(x) term
# Compensate for overlapping short intervals
tmp1 = np.arange(1, n)
tmp2 = (n - 1) * np.ones((N - 2 * (n - 1) - 1))
tmp3 = np.arange(n - 1, 0, -1)
p = 1 / np.concatenate((tmp1, tmp2, tmp3))
w = np.zeros(N)
for j in range(N - n + 1):
# Change coordinates, and constant and linear parts
W = ((t[j + n - 1] - t[j]) ** 2) * W1 + (t[j + n - 1] - t[j]) * t[j] * W2
for k in range(n - 1):
w[j : j + n] = w[j : j + n] + p[j + k] * W[:, k]
wn = w
wn[-40:] = (w[-40]) / (N - 40) * np.arange(N - 40, N)
return wn
[docs]def calc_filter(n, filter):
"""fbp filters, higher order integrals discretization"""
d = 0.5
t = np.arange(0, n / 2 + 1) / n
if filter == "none":
wfa = n * 0.5 + t * 0
return wfa.astype("float32")
elif filter == "ramp":
# .*(t/(2*d)<=1)%compute the weigths
wfa = n * 0.5 * _wint(12, t)
elif filter == "shepp":
wfa = n * 0.5 * _wint(12, t) * np.sinc(t / (2 * d)) * (t / d <= 2)
elif filter == "cosine":
wfa = n * 0.5 * _wint(12, t) * np.cos(np.pi * t / (2 * d)) * (t / d <= 1)
elif filter == "cosine2":
wfa = n * 0.5 * _wint(12, t) * (np.cos(np.pi * t / (2 * d))) ** 2 * (t / d <= 1)
elif filter == "hamming":
wfa = (
n
* 0.5
* _wint(12, t)
* (0.54 + 0.46 * np.cos(np.pi * t / d))
* (t / d <= 1)
)
elif filter == "hann":
wfa = n * 0.5 * _wint(12, t) * (1 + np.cos(np.pi * t / d)) / 2.0 * (t / d <= 1)
elif filter == "parzen":
wfa = n * 0.5 * _wint(12, t) * pow(1 - t / d, 3) * (t / d <= 1)
wfa = 2 * wfa * (wfa >= 0)
wfa[0] *= 2
wfa = xp.asarray(wfa, dtype=xp.float32)
return wfa